Vanadium Chemistry References

1. Hopkins, L.L.Jr.; Cannon, H.L.; Miesch, A.T.; Welch, R.M.; Nielsen, F.H., “Trace elements related to health and disease: Vanadium”, Geochem. Environ., 1977, 2, 93 – 107.

2. Nielsen, F.H., “Evidence of the essentiality of arsenic, nickel, and vanadium and their possible nutritional significance”, Adv. Nutr. Res., 1980, 3, 157 – 172.

3. Crans, D.C.; Simone, C.M., “Nonreductive interaction of vanadate with an enzyme containing a thiol group in the active site: Glycerol-3-phosphate dehydrogenase”, Biochem., 1991, 30, 6734 – 6741.

4. Drueckhammer, D.G.; Durrwachter, J.R.; Pederson, R.L.; Crans, D.C.; Wong, C.H., “Reversible and in situ formation of organic arsenates and vanadates as organic phosphate mimics in enzymatic reactions: Mechanistic investigation of aldol reactions and synthetic applications”, J.Org. Chem., 1989, 54, 70 – 77.

5. Sky-Peck, H.H., “Trace metals and neoplasia”, Clin. Physiol. Biochem., 1986, 4, 99 – 111.

6. Chasteen, N.D., “The biochemistry of vanadium”, Struc. Bonding, 1983, 53, 105 – 138.

7. Cantley, L.C.; Josephson, L.; Warner, R.; Yanaisawa, M.; Lechene, C.; Guidotti, G., “Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle”, J. Biol. Chem., 1977, 252, 7421 – 7423.

8. Josephson, L.; Cantley, L.C., “Isolation of a potent (Na -K) stimulated ATPase inhibitor from striated muscle”, Biochem., 1977, 16, 4572 – 4578.

9. Cantley, L.C.; Aisen, P., “The fate of cytoplasmic vanadium. Implications on (Na,K)-ATPase inhibition”, J. Biol. Chem., 1979, 254, 1781 – 1784.

10. Nechay, B.R.; Nanninga, L.B.; Nechay, P.S.E., “Vanadyl(IV) and vanadate(V) binding to selected endogenous phosphate, carboxyl, and amino ligands; calculations of cellular vanadium species distribution”, Arch. Biochem. Biophys., 1986, 251, 128 – 138.

11. Sharma, R.P.; Oberg, S.G; Parker, R.D, “Vanadium retention in rat tissues following acute exposures to different dose levels”, J. Toxicol. Environ. Health, 1980, 6, 45 – 54.
12. Sabbioni, E.; Marafante, E., “Metabolic patterns of vanadium in the rat”, Bioinorg. Chem., 1978, 9, 389 – 407.

13. Peckauskas, R.A.; Termine, J.D.; Pullman, I., “ESR investigation of the binding of acidic biopolymers to synthetic apatite”, Biopoly., 1976, 15, 569 – 581.

14. Peckauskas, R.A.; Pullman, I.; Termine, J.D., “ESR investigation of the binding of some neutral polyamino acids to synthetic apatite”, Biopoly., 1977, 16, 199 – 206.

15. Venugopal, B.; Luckey, T.D., “Metal toxicity in mammals. 2. Chemical toxicity of metals and metalloids”, New York, Plenum Press, 1978, pp. 220 – 226.

16. Sheehter, Y.; Shisheva, A., “Vanadium salts and the future treatment of diabetes”, Endeavour, 1993, 17, 27 – 31.

17. Thompson, K.H.; Yuen, V.G.; McNeill, J.H.; Orvig, C., “Chemical and pharmacological studies of a new class of antidiabetic vanadium complexes”, ACS. Symp. Ser., 1998, 711, 329 – 343.

18. Willsky, G.R., “Vanadium in biological systems physiology and biochemistry”, Chasteen, N.D., Ed.; Kluwer Academic Publishers: Dordrecht, Netherlands, 1990, 1 – 24.

19. Waters, M.D., “Toxicology of vanadium: Advances in modern toxicology. Vol. 2. Toxicology of trace elements”, Goyer, R.A.; Mehlman, M.A., Ed. New York, Wiley, 1977, pp. 147 – 189.

20. WHO, Diabetes Mellitus, Reports of a WHO Study Group, WHO Technical Report Series, 1985, pp. 727 – 876.

21. Zimmet, P.; Alberti, K.G.M.M.; Shaw, J., “Global and societal implications of the diabetes epidemic”, Nature, 2001, 414, 782 – 787.

22. Crans, D.C.; Yang, L.; Jakusch, T.; Kiss, T., “Aqueous chemistry of ammonium (dipicolinato)oxovanadate(V): The first organic vanadium(V) insulin-mimetic compound”, Inorg. Chem., 2000, 39, 4409 – 4416.

23. Thompson, K.H.; Mc Neill, J.H.; Orvig, C., “Vanadium compounds as insulin mimics”, Chem. Rev., 1999, 99, 2561 – 2571.

24. Czech, M.P., “Molecular basis of insulin action”, Annual. Rev. Biochem., 1977, 46, 359 – 384.
25. Reaven, G.M., “Role of insulin resistance in human disease”, Diabetes, 1988, 37, 1595 – 1607.

26. Heyliger, C.E.; Tahiliani, A. G.; Mc Neill, J. H., “Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats”, Science, 1985, 227, 1474 – 1477.

27. Caravan, P.; Gelmini, L.; Glover, N.; Herring, F.G.; MeNeill, J.H., “Reaction chemistry of BMOV, bis(maltolato)oxovanadium(IV), a potent insulin mimetic agent”, J. Am. Chem. Soc., 1995, 117, 12759 – 12770.

28. Tolman, E.L.; Barris E.; Burns M.; Pansini A.; Partridge R., “Effects of vanadium on glucose metabolism”, Life Sci., 1979, 25, 1159 – 1164.

29. Hudson, F.T.G., “Toxicology and biological significance”, Elsevier, New York, 1964, p. 140.

30. Cusi, K.; Cukier. S.; DeFronzo, R.A.; Torres, M.; Puchulu, F.M.; Redondo, J.C., “Vanadyl sulfate improves hepatic and muscle insulin sensitivity in Type II diabetes”, J. Clin. Endo. Meta., 2001, 86, 1410 – 1417.

31. Peters, K.G.; Davis, M.G.; Howard, B.W.; Pokross, M.; Rastogi, V.; Diven, C.; Greis, K.D.; Eby-Wilkens, E.; Maier, M.; Evdokimov, A.; Soper, S.; Genbauffe, F., “Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium(VO4) as the active component”, J. Inorg. Biochem., 2003, 96, 321 – 330.

32. Yuen, V.G.; Orvig, C.; McNeill, J.H., “Glucose-lowering effects of a new organic vanadium complex, bis(maltolato)oxovanadium(IV)”, Can. J Physiol. Pharmacol, 1993, 71, 263 – 269.

33. McNeill, J.H.; Yuen, V.G.; Hoveyda, H.R.; Orvig, C., “Bis(maltolato) oxovanadium(IV) is a potent insulin mimic”, J. Med. Chem., 1992, 35, 1489 – 1491.

34. Sun, Y.; James, B.R.; Rettig, S.J.; Orvig, C., “Oxidation kinetics of the potent insulin mimetic agent bis(maltolato)oxovanadium(IV) (BMOV) in water and in methanol”, Inorg. Chem., 1996, 35, 1667 – 1673.

35. McNeill, J.H.; Yuen, V.G.; Dai, S.; Orvig, C. “Increased potency of vanadium using organic ligands”, Mol. Cell. Biochem, 1995, 153, 175 – 180.

36. Loboiron, B.D.; Thompson, K.H.; Hanson, G.R.; lam, E.; Aebischer, N.; Orvig, C., “New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): Transport and biotransformations of insulin-enhancing vanadium pharmaceuticals”, J. Am. Chem. Soc. 2005, 127, 5104 – 5115.

37. Thompson, K.H.; Loboiron, B.D.; Sun, Y.; Bellman, K.D.D.; Setyawati, I.A.; Patrick, B.O.; Karunaratne, V.; Rawji, G.; Wheelar, J.; Sutton, K.; Bhanot, S.; Cassidy, C.; McNeil, J.H.; Yuen, V.G.; Orvig, C., “Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential”, J. Biol. Inorg. Chem., 2003, 8, 66 – 74.

38. Thompson, K.H.; Orvig, C., “Metal complexes in medicinal chemistry: New vistas and challenges in drug design”, Dalton Trans., 2006, 761 – 764.

39. Sakurai, H.; Kojima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasui, H., “Antidiabetic vanadium(IV) and zinc(II) complexes”, Coord. Chem. Rev., 2002, 226, 187 – 198 and references cited there in.

40. Sakurai, H.; Watanabe, H.; Tamura, H.; Yasui, H.; Matsushita, R.; Takada, J., “Insulin-mimetic vanadyl-dithiocarbamate complexes”, Inorg. Cheim. Acta., 1998, 283, 175 – 183.

41. Rehder, D.; Pessoa, J.C.; Geraldes, C.F.G.C.; Castro, M.M.C.A.; Kabanos, T.; Kiss, T.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M.; Salifoglou, A.; Turel, I.; Wang, D., “In vitro study of the insulin-mimetic behaviour of vanadium(IV,V) coordination compounds”, J. Biol. Inorg. Chem., 2002, 7, 384 – 396.

42. Crans, D.C., “Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) complexes”, J. Inorg. Biochem., 2000, 80,123 – 131.

43. Posner, B.I.; Faure, R.; Bergess, J.W.; Beven, A.P.; Lachance, D.; Jhang, S.G.; Fantus, I.G.; Nag, J.B.; Hall, D.A.; Lum, S.B.; Shaver, A.J., “Peroxo vanadium compounds: A new class of potent phosphotyrosinephosphatase inhibitors which are insulin mimetic”, J. Biol. Chem., 1994, 269, 4596 – 4604.

44. Shaver, A.J.; Hall, D.A.; Nag, J.B.; Lebius, A.M.; Hynes, R.C.; Posner, B.I., “Bisperoxovanadium compounds: Synthesis and reactivity of some insulin mimetic complexes”, Inorg. Chim. Acta., 1995, 229, 253 – 260.

45. Fantus, I.G.; Kadota, S.; Deragon, G.; Foster, B.; Posner, B.I., “Pervanadate (peroxide(s) of vanadate) mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase”, Biochem., 1989, 28, 8864 – 8871.

46. Kadota, S.; Fantus, I.G.; Deragon, G.; Guyda, H.J.; Posner, B.I., “Stimulation of insulin like growth factor II receptor binding and insulin receptor kinase activity in rat adipocytes. Effect of vanadate and H2O2”, J. Biol. Chem., 1987, 262, 8252 – 8356.

47. Sarkar, A.R.; Mondal, S., “Insulin mimetic peroxo complexes of vanadium containing uracil or cytosine as ligands”, Metal Based Drugs, 2000, 7, 157 – 164.

48. Kopf-Maier, P.; Wagner, W.; Kopf, H.D., “Different inhibition pattern of the nucleic acid metabolism after in vitro treatment with titanocene and vanadocene dichlorides”, Naturwissenschaften, 1981, 68, 272 – 273.

49. Cruz, T.F; Morgan, A; Min, W., “In vitro and in vivo antineoplastic effects of orthovanadate”, Molecul. Cell. Biochem., 1995, 153, 161 – 166.

50. Nobĺia, P.; Vieites, M.; Parajón-Costa, B.S.; Baran, E.J.; Cerecetto, H.; Draper, P.; Gonz alez, M.; Piro, O.E.; Castellano, E.E.; Azqueta, A.; Lopez de Cerain, A.; Monge-Vega, A.; Gambino, D., “Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro antitumor activity towards kidney tumor cells (K-10): Crystal structure of [VO2(5-bromosalicylaldeyhyde semicarbazone)]”, J. Inorg. Biochem., 2005, 99, 443 – 451.

51. Djoedjevic, C.; Wampler, G.L., “Antitumor activity and toxicity of peroxo heteroligand vanadates(V) in relation to biochemistry of vanadium”, J. Inorg. Biochem., 1985, 25, 51 – 55.

52. Edwards, D.I., “Nitroimidazoles”, Antibiot. Chemother., 1997, 31, 404 – 415.

53. Caylor, K.B.; Cassimatis, M.K., “Metronidazole neurotoxicosis in two cats”, J. Am. Anim. Hosp. Assoc., 2001, 37, 258 – 262.

54. Wright, C.W.; Phillipson, J.D., “Natural products and the development of selective antiprotozoal drugs”, Phytother. Res., 1990, 4, 127 – 139.

55. Maurya, M.R.; Khurana, S.; Shailendra, Azam, A.; Zhang, W.; Rehder, D. “Synthesis, characterisation and antiamoebic studies of dioxovanadium(V) complexes containing ONS donor ligands derived from S-benzyldithiocarbazate” Eur. J. Inorg. Chem., 2003, 1966 – 1973.

56. Butler, A.; Walker, J.V., “Marine haloperoxidases”, Chem. Rev., 1993, 93, 1937 – 1944.

57. Kirk, O.; Conrad, L.S., “Metal-free haloperoxidases: Fact or artifact”, Ang. Chem., Inter. Ed., 1999, 38, 977 – 979.

58. Butler, A.; Carter-Franklin, J.N., “The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products”, Natural Product Reports, 2004, 21, 180 – 188.

59. Vreeland, V.; Waite, J.H.; Epstein, L., “Polyphenols and oxidases in substratum adhesion by marine algae and mussels”, J. Phycol., 1998, 34, 1 – 8.

60. Barnett, P.; Hermrika, W.; Dekker; H.L.; Muijsers, A.O.; Renirie, R.., “Isolation, characterization, and primary structure of the vanadium chloroperoxidase from the fungus Embellisia didymospora”, J. Biol. Chem., 1998, 273, 23381 – 23387.

61. Dong, C.; Huang, F.; Deng, H.; Schaffrath, C.; Spencer, J.B.; O'Hagan, D.; Naismith, H.J., “Crystal structure and mechanism of a bacterial fluorinating enzyme”, Nature, 2004, 427, 561 – 565.

62. O'Hagan, D.; Schaffrath, C.; Cobb, S.L.; Hamilton, J.T.G.; Murphy C.D., “Biochemistry: Biosynthesis of an organofluorine molecule”, Nature, 2002, 416, 279 – 280.

63. Vilter, H., “Peroxidases from phaeophyceae: A vanadium(V)-dependent peroxidase from Ascophyllum nodosum”, Phytochem., 1984, 23, 1387 – 1390.

64. Kusthardt U; Hedman B; Hodgson K.O; Hahn R; Vilter H., “High-resolution XANES studies on vanadium-containing haloperoxidase: pH-dependence and substrate binding”, Federation of Eur. Biochem. Soc., 1993, 329, 5 – 8.

65. Messerschmidt, A.; Wever, R., “X-ray structure of a vanadium-containing enzyme: Chloroperoxidase from the fungus Curvularia inaequalis”, Proc. Natl. Acad. Sci. U.S.A., 1996, 93, 392 – 396.

66. Messerschmidt, A.; Prade, L.; Wever, R., “Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form”, Biol. Chem., 1997, 378, 309 – 315.

67. Simons, B.H.; Barnett, P.; Vollenbroek, E.G.M.; Dekker, H.L.; Muijsers, A.O.; Messerschmidt, A., Wever, R., “ Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequalis”, Eur. J. Biochem., 1995, 229, 566 – 574.

68. Isupov, M.I.; Dalby, A.R.; Brindley, A.; Izumi, Y.; Tanabe, T.; Murshudov, G.N.; Littlechild, J.A., “Crystal structure of vanadium dependent bromoperoxidase from Corallina officinalis”, J. Mol. Biol., 2000, 299, 1035 – 1049.

69. van Deurzen, M.P.J.; Remkes, I.J.; van Rantwijk, F.; Sheldon, R.A.., “Chloroperoxidase catalyzed oxidations in t-butyl alcohol/water mixtures”, J. Mol. Catal. A: Chem., 1997, 117, 329 – 337.

70. van Deurzen, M.P.J.; van Rantwijk, F.; Sheldon, R.A., “Selective oxidations catalyzed by peroxidases”, Tetrahedron, 1997, 53, 13183 – 13220.

71. Hemrika W; Renirie R; Dekker H L; Barnett P; Wever R, “From phosphatases to vanadium peroxidases: A similar architecture of the active site”, Proc. Natl. Acad. Sci. U.S.A., 1997, 94, 2145– 2149.

72. Neuwald, A.F., “An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases”, Protein Sci., 1997, 6, 1764 – 1767.

73. ten Brink, H.B.; Schoemaker, H.E.; Wever, R., “Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum: Evidence for direct oxygen transfer catalysis”, Eur. J. Biochem., 2001, 268, 132 – 138.

74. Jayme N.; Carter-Franklin; Butler, A., “Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products”, J. Am. Chem. Soc., 2004, 126, 15060 – 15066.

75. Robson, R.L.; Eady, R.E.; Richardson, T.H.; Miller, R.W.; Hawkins, M.; Postgate, J.R., “The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme”, Nature, 1986, 322, 388 – 390.

76. Hales, B.J.; Case, E.E.; Morningstar, J.E.; Dzeda, M.F.; Mauterer, L.A., “Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii”, Biochem., 1986, 25, 7251 – 7255.

77. Hales, B.J.; Langosch, D.J.; Case, E.E., “Isolation and characterization of a second nitrogenase Fe-protein from Azotobacter vinelandii”, J. Biol. Chem., 1986, 261, 15301 – 15306.

78. Chen, J.; Christiansen, J.; Tittsworth, R.C.; Hales, B.J.; George, S.J.; Coucouvanis, D.; Cramer, S.P., “Iron EXAFS of Azotobacter vinelandii nitrogenase molybdenum-iron and vanadium-iron proteins”, J. Am Chem. Soc., 1993, 115, 5509 – 5515.

79. Pau, R.N., “Biology and Biochemistry of Nitrogen Fixation”, Dilworth, M.J.; Glenn, A.R. (Eds.), Elsevier, Amsterdam, 1991, Ch. 3.
80. Chan, H.K.; Kim, J.; Res, D.C., “The nitrogenase Fe Mo-cofactor and P-cluster pair: 2.2 Å resolution structures”, Science, 1993, 260, 792 – 794.

81. Smith, B.E.; Eady, R.R.; Lowe, D.J.; Gormal, C., “The vanadium-iron protein of vanadium nitrogenase from Azotobactor Chroococcum contains an iron-vanadium cofactor”, Biochem., 1988, 250, 299 – 302.

82. Wever, R.; Hemrika, W., “Vanadium in the Environment, Part One: Chemistry and Biochemisty”, Nriagu, J.O., Ed.; John Wiley & Sons, New York, 1998, Chapter 12.

83. Holm, R.H.; Kennepohl, P.; Solomon, E.I., “Structural and functional aspects of metal sites in biology”, Chem. Rev., 1996, 96, 2239 – 2314.

84. Butler, A.; Carrano, C.J., “Coordination chemistry of vanadium in biological systems”, Coord. Chem. Rev., 1991, 109, 61 – 105.

85. Tsagkalidis, W.; Rodewald, D.; Rehder, D., “Coordination and oxidation of vanadium(II) by 1,2-bis(2-sulfidophenylsulfanyl)ethane(2-) (S4): The structures of [V(S4)tmeda], the first example of vanadium(II)-sulfide coordination, and of [V3(-O)2(S2)4(tmeda)2] [S2 = 1,2-benzenedithiolate(2-)]”, J. Chem. Soc., Chem. Commun., 1995, 165 – 166.

86. Tasiopoulos, A.J.; Vlahos, A.T.; Keramidas, A.D.; Kabanos, T.A.; Deligiannakis, Y.G.; Raptopoulou, C.P.; Terzis, A., “Models of oxovanadium(IV) protein interactions: The first oxovanadium(IV) complexes with dipeptides”, Angew. Chem. Intl. Ed. Engl., 1996, 35, 2531 – 2533.

87. Farahbakhsh, M.; Nekola, H.; Scmidt, H.; Rehder, D., “Thio-ligation to vanadium: The NSSN and SNO donar sets (N equals pyridine, N equals enamine; S equals thioether, S equals thiolate)”, Chem. Ber. Recueil, 1997, 130, 1129 – 1133.

88. Cornman, C.R.; Stauffer, T.C.; Boyle, P.D., “Oxidation of a vanadium(V)-dithiolate complex to a vanadium(V)-(2), (2)-disulfenate complex”, J. Am. Chem. Soc., 1997, 119, 5986 – 5987.

89. Tsagkalidis, W.; Rehder, D., “Characterization of bio-related vanadium and zinc complexes containing tetradentate dithiolate -disulphide, -diamine and -amine-amide ligands”, J. Biol. Inorg. Chem., 1996, 1, 507 – 514.

90. Milanesio, M., Viterbo, D., Hernandez, R. P., Rodriguez, J. D., Ramirez-Ortiz, J.; Valdes-Martinez, J., “Synthesis, characterization and novel crystal structure of (salicylal-4-phenylthiosemicarbazidato) ammonium dioxovanadate(V) with a V–S bond”, Inorg. Chim. Acta., 2000, 306, 125 – 129.

91. Schwendt, P.; Svancarek, P.; Smatanova, I.; Marek, J., “Stereospecific formation of α-hydroxycarboxylato oxo peroxo complexes of vanadium(V). Crystal structure of (NBu4)2[V2O2(O2)2( -lact)2]•2H2O and (NBu4)2 [V2O2(O2)2( -lact)( -lact)]•2H2O”, J. Inorg. Biochem., 2000, 80, 59 – 64.

92. De la Rosa, R.; Clague, M.J.; Butler, A., “A functional mimic of vanadium bromoperoxidase”, J. Am. Chem. Soc., 1992, 114, 760 – 761.

93. Campbell, N.J.; Dengel, A.C.; Griffith, W.P., “Studies on transition metal peroxo complexes. The nature of peroxovanadates in aqueous solution”, Polyhedron, 1989, 8, 1379 – 1386.

94. Everett, R.R.; Kanofsky, J.R.; Butler, A., “Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production”, J. Biol. Chem. 1990, 265, 4908 – 4914.

95. Butler, A.; in Reedijk, J.; Bouwman, E., (Eds.), Bioinorganic Catalysis, 2nd ed. (Chapter 5), Marcel Dekker, New York 1999.

96. Slebodnick, C.; Hamstra, B.J.; Pecoraro, V.L., “Modeling the biological chemistry of vanadium: Structural and reactivity studies elucidating biological functions”, Struct. Bonding, 1997, 89, 51 – 107.

97. Maurya, M.R.; Saklani, H.; Agarwal, S., “Oxidative bromination of salicylaldehyde by potassium bromide / H2O2 catalysed by dioxovanadium(V) complexes encapsulated in zeolite-Y: A functional model of haloperoxidases”, Catal. Commun., 2004, 5, 563 – 568.

98. Balkus Jr. K.J.; Khanrnamedova, A.K.; Dixon, K. M.; Bedioui, F., “Oxidations catalyzed by zeolite ship-in-a-bottle complexes”, Appl. Catal. A: Gen., 1996, 143,159 – 173.

99. Ligtenbarg, A.G.J.; Hage, R.; Feringa, B.L., “Catalytic oxidations by vanadium complexes”, Coord. Chem. Rev., 2003, 237, 89 – 101.

100. Conte, V.; Di Furia, F.; Licini, G., “Liquid phase oxidation reactions by peroxides in the presence of vanadium complexes”, Appl. Catal. A: Gen., 1997, 157, 335 – 361.

101. Thompson, K.H.; Yuen, V.G.; McNeill, J.H.; Orvig, C., “Vanadium compounds: Chemistry, biochemistry, and therapeutic applications”, Tracey, A.S.; Crans, D.C., Eds; Oxford University Press, New York, NY, 1998, pp. 329 – 343.

102. Butler, A.; Clague, M.J.; Meister, G.E., “Vanadium peroxide complexes”, Chem. Rev. 1994, 94, 625 – 638.

103. Mimoun, H.; Mignard, M.; Brechot, P.; Saussine, L., “Selective epoxidation of olefins by oxo[N-(2-oxidophenyl)salicylidenaminato]vanadium(V) alkylperoxides. On the mechanism of the Halcon epoxidation process”, J. Am. Chem. Soc., 1986, 108, 3711 – 3718.

104. Shul'pin, G.B.; Ishii, Y.; Sakaguchi, S.; Iwahama, T., “Oxidation with the O2-H2O2-vanadium complex-pyrazine-2-carboxylic acid, reagent 11. Oxidation of styrene, phenylacetylene, and their derivatives with the formation of benzaldehyde and benzoic acid”, Russian Chem. Bull., 1999, 48, 887 – 890.

105. Rehder, D.; Santoni, G.; Licini, G. M.; Schulzke, C.; Meier, B., “The medicinal and catalytic potential of model complexes of vanadate-dependent haloperoxidases”, Coord. Chem. Rev., 2003, 237, 53 – 63.

106. Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H., “Efficient asymmetric oxidation of sulfides and kinetic resolution of sulfoxides catalyzed by a vanadium-salan system”, J. Org. Chem. 2004, 69, 8500 – 8503.

107. Bolm, C., “Vanadium-catalyzed asymmetric oxidations”, Coord. Chem. Rev. 2003, 237, 245 – 256.

108. ten Brink, H.B.; Tuynman, A.; Dekker, H.L.; Hemrika, W.; Izumi, Y.; Oshiro, T.; Schoemaker, H.E.; Wever, R., “Enantioselective sulfoxidation catalyzed by vanadium haloperoxidases”, Inorg. Chem. 1998, 37, 6780 – 6784.

109. Ando, R.; Yagyu, T.; Maeda, M., “Characterization of oxovanadium(IV) Schiff-base complexes and those bound on resin, and their use in sulfide oxidation”, Inorg. Chim. Acta, 2004, 357, 2237 – 2244.

110. Ando, R.; Inden, H.; Sugino, M.; Ono, H.; Sakaeda, D.; Yagyu, T.; Maeda, M., “Spectroscopic characterization of amino acid and amino acid ester Schiff-base complexes of oxovanadium and their catalysis in sulfide oxidation”, Inorg. Chim. Acta, 2004, 357, 1337 – 1344.

111. Ando, R.; Ono, H.; Yagyu, T.; Maeda, M., “Spectroscopic characterization of mononuclear, binuclear, and insoluble polynuclear oxovanadium(IV) Schiff base complexes and their oxidation catalysis”, Inorg. Chim. Acta, 2004, 357, 817 – 823.

112. Ando, R.; Mori, S.; Hayashi, M.; Yagyu; T.; Maeda, M., “Structural characterization of pentadentate salen-type Schiff-base complexes of oxovanadium(IV) and their use in sulfide oxidation”, Inorg. Chim. Acta, 2004, 357, 1177 – 1184.

113. Maurya, M.R.; Sikarwar, S.; Joseph, T.; Manikandan, P.; Halligudi, S.B., “Synthesis, characterisation and catalytic potentials of polymer anchored copper(II), oxovanadium(IV) and dioxomolybdenum(VI) complexes of 2(-hydroxymethyl) benzimidazole”, React. Funct. Polymer, 2005, 63, 71 – 83.

114. Maurya, M.R.; Saklani, H.; Kumar, A.; Chand, S., “Dioxovanadium(V) complexes of dibasic tridentate ligands encapsulated in zeolite-Y for the liquid phase catalytic hydroxylation of phenol using H2O2 as oxidant”, Catal. Lett., 2004, 93, 121 – 127.

115. Maurya, M.R.; Kumar, M.; Titinchi, S.J.J; Chand. S., “Oxovanadium(IV) Schiff base complexes encapsulated in Zeolite-Y as catalysts for the liquid-phase hydroxylation of phenol”, Catal Lett., 2003, 86, 97 – 105.

116. Radosevich, A.T.; Musich, C.; Toste, F.D., “Vanadium-catalyzed asymmetric oxidation of α-hydroxy esters using molecular oxygen as stoichiometric oxidant”, J. Am. Chem. Soc., 2005, 127, 1090 – 1091.

117. Rowe, R.A.; Jones, M.M., “Vanadium(IV) oxy(acetylacetonate)”, Inorg. Synth., 1957, 5, 113 – 116.

118. Bhattacharya, M., “An efficient and direct synthesis of bis(acetylacetonato)oxovanadium(IV)”, J. Chem. Res.( S), 1992, 415.

119. Calviou, L.J.; Collison, D.; Garner, C.D.; Mabbs, F.E.; Passand, M.A.; Peanson, M., “Imidazole and related heterocyclic ligand complexes of oxovanadium(IV)-potential models for the reduced vanadium site of the seaweed bromoperoxidases”, Polyhedron, 1989, 8, 1835 – 1837.

120. Carrano, C.J.; Nunn, C.M.; Quan, R.; Bonadies, J.A.; Pecoraro, V.L., “Monomeric and dimeric vanadium(IV) and -(V) complexes of N-(hydroxyalkyl)salicylideneamines: Structures, magnetochemistry and reactivity”, Inorg. Chem., 1990, 29, 944 – 951.

121. Maurya, M.R.; Khurana, S., “Potassium bis(2-[-hydroxyalkyl/ aryl]benzimidazolato) dioxovanadates(V) through base assisted aerial oxidation of the corresponding oxovanadium(IV) complexes”, J. Chem. Res. (S), 2002, 260 – 261.

122. Maurya, M.R., “Development of the coordination chemistry of vanadium through bis(acetylacetonato)oxovanadium(IV): Synthesis, reactivity and structural aspects”, Coord. Chem. Rev., 2003, 237, 163 – 181.

123. Schmidt, H.; Bashirpoor, M.; Rehder, D., “Structural characterization of possible intermediates in vanadium-catalysed sulfide oxidation” J. Chem. Soc., Dalton Trans., 1996, 3865 – 3870.

124. Asgedom, G.; Sreedhara, A.; Kivikoski, J.; Valkonen, J.; Rao, C.P., “Mononuclear cis-dioxovanadium(V) anionic complexes [VO2L]– {H2L =[1 + 1] Schiff base derived from salicylaldehyde (or substituted derivatives) and 2-amino-2-methylpropan-l-ol}: Synthesis, structure, spectroscopy, electrochemistry and reactivity studies”, J. Chem. Soc., Dalton Trans., 1995, 2459 – 2466 .

125. Chakravarty, J.; Dutta, S.; Chandra, S.; Basu, P.; Chakaravorty, A., “Chemistry of variable-valence VO2+ (z = 2, 3) complexes; synthesis, structure and metal redox of new (VVO(ONO)(ON)] and VIVO(ONO)(NN) families”, Inorg. Chem., 1993, 32, 4249 – 4255.

126. Samanta, S.; Mukhopadhyay, S.; Mandal, D.; Butcher, R.J.; Chaudhury, M., “Adduct formation between alkali metal ions and anionic LVVO2– (L2– = tridentate ONS ligands) species: Syntheses, structural investigation, and photochemical studies”, Inorg. Chem., 2003, 42, 6284 – 6293.

127. Baruah, B.; Das, S.; Chakravorty, A., “Vanadate chelate of esters of monoionised diols and carbohydrates”, Coord. Chem. Rev., 2003, 237, 135 – 146.

128. Colpas, G.J.; Hamstra, B.J.; Kampf, J.W.; Pecoraro, V.L., “The preparation of VO3+ and VO2+ complexes using hydrolytically stable, asymmetric ligands derived from Schiff base precursors”, Inorg. Chem., 1994, 33, 4669 – 4675.

129. Maurya, M.R.; Khurana, S.; Zhang, W.; Rehder, D., “Biomimetic oxo-, dioxo- and oxo-peroxo-hydrazonato vanadium(IV/V) complexes”, J. Chem. Soc., Dalton Trans., 2002, 3015 – 3023.

130. Dutta, S.K.; Kumar, S.B.; Bhattacharyya, S.; Tiekink, E.R.T.; Chaudhury, M., “Intermolecular electron transfer in (BzimH)[(LOV)2O] (H2L = S-methyl 3-((2-hydroxyphenyl)methyl)dithiocarbazate): A novel µ-Oxo dinuclear oxovanadium(IV/V) compound with a trapped- valence (V2O3)3+ core”, Inorg. Chem., 1997, 36, 4954 – 4960.

131. Samanta, S.; Ghosh, D.; Mukhopadhyay, S.; Endo, A.; Weakley, T.J.R.; Chaudhury, M., “Oxovanadium(IV) and -(V) complexes of dithiocarbazate-based tridentate Schiff base ligands: Syntheses, structure, and photochemical reactivity of compounds involving imidazole derivatives as coligands”, Inorg. Chem., 2003, 42, 1508 – 1517.

132. Dutta, S.K.; Samanta, S.; Kumar, S.B.; Han, O.H.; Burckel, P.; Pinkerton, A. A.; Chaudhury, M., “Mixed-oxidation divanadium(IV,V) compound with ligand asymmetry: Electronic and molecular structure in solution and in the solid state”, Inorg. Chem., 1999, 38, 1982 – 1988.

133. Stankiewicz, P.J.; Tracey, A.S.; Crans, D.C., “Metal ions in biological systems,” Sigel, H.; Sigel, A., Eds.; Marcel Dekker: New York, 1995, pp 287 – 324.

134. Crans, D.C., “Aqueous chemistry of labile oxovanadates: Relevance to biological studies”, Comments Inorg. Chem., 1994, 16, 1 – 31.

135. Crans, D.C., “Enzyme interactions with labile oxovanadates and other polyoxometalates”, Comments Inorg. Chem., 1994, 16, 35 – 76.

136. Mahroof-Tahir, M.; Keramidas, A.D.; Goldfrab, R.B.; Anderson, O.P.; Miller, M.M.; Crans, D.C., “Solution and solid state properties of [N-(2-hydroxyethyl)iminodiacetato]vanadium(IV), -(V), and -(IV/V) complexes”, Inorg. Chem., 1997, 36, 1657 – 1668.

137. Mondal, A.; Sarkar; S.; Chopra, D.; Row, T.N.G.; Pramanik, K.; Rajak, K.K., “Family of mixed-valence oxovanadium(IV/V) dinuclear entities incorporating N4O3-coordinating heptadentate ligands: Synthesis, structure, and EPR spectra”, Inorg. Chem., 2005, 44, 703 – 708.

138. Hills, A.; Hughes, D.L.; Leigh, G.J.; Sanders, J.R., “A linear tetranuclear vanadium-oxygen assembly” J. Chem. Soc., Chem. Commun., 1991, 827 – 829.

139. Hughes, D.L.; Kloinkos, U.; Leigh, G.J.; Malwald, M.; Sanders, R.; Sudbrake, C., “New polymeric compounds containing vanadium-oxygen chains”, J. Chem. Soc. Dalton Trans., 1994, 2457 – 2466.

140. Kabanos, T.A.; Keramidas, A.D.; Mentzafos, D.; Terzis, A., “Vanadyl(IV)-amide binding. The preparation and X-ray crystal structure of [VO(pycac)] {H2pycac = N-[2-(4-oxopentane-2-ylideneamino)phenyl]pyridine-2-carboxamide}”, J. Chem.Soc., Chem. Commun., 1990, 1664 – 1665.

141. Kabanos, T.A.; Keramidas, A.D.; Papaioannou, A.B.; Terzis, A., “Synthesis and characterization of vanadium(III) and oxovandium(IV/V) species with deprotonated amide ligands”, J. Chem. Soc., Chem. Commun., 1993, 643 – 645.

142. Keramidas, A.D.; Papaioannou, A.B.; Vlahos, A.; Kabanos, T.A.; Bonas, G.; Makriyannis, A.; Rapropoulou, C.P.; Terzis, A., “Model investigations of protein vanadium interactions. Synthetic, structural and physical studies of vanadium(III) and oxovanadium(IV/V) complexes with amidate ligands”, Inorg. Chem., 1996, 35, 357 – 367.

143. Hanson, G.R.; Kabanos, T.A.; Keramidas, A.D.; Mentzafos, D.; Terzis, A., “Oxovanadium(IV)-amide bonding. Synthesis, structure and physical studies of {N-[2-(4-oxopent-2-en-2-ylamino)phenyl]pyridine-2carboxamido} oxovanadium(IV) ”, Inorg. Chem., 1992, 31, 2587 – 2594.

144. Borovic, A.S.; Dewey, T.M.; Reymond, K.N., “Amidate ligands for the oxovandium(IV) cation: Design, synthesis, structure and spectroscopic and electrochemical properties”, Inorg. Chem., 1993, 32, 413 – 421.

145. Cornman, C.R.; Geiser-Bush, K.M.; Singh, P., “Structural and spectroscopic characterization of a novel vanadium(V)-amide complex”, Inorg. Chem., 1994, 33, 4621 – 4622.

146. Klich, P.R.; Daniher, A.T.; Challen, P.R.; MeConville, D.B.; Youngs, W.J. “Vanadium(IV) complexes with mixed O, S donor ligands; synthesis, structures and properties of the anions. Tris(2-mercapto-4-methyl phenolato)vanadium(IV) and bis(2-mercaptophenolato)oxovanadate(IV)”, Inorg. Chem., 1996, 35, 347 – 356.

147. Kojima, K.; Taguchi, H.; Tsuchimoto, M.; Nakajima, K., “Tetra dentate Schiff base oxovanadium(IV) complexes: Structures and reactivities in the solid state”, Coord. Chem. Rev., 2003, 237, 183 – 196.

148. Li, X.; Lah, M.S.; Pecoraro, V.L., “Vanadium complexes of the tridentate Schiff base ligand N-salicylidene-N’-(2-hydroxyethyl)ethylenediamine: Acid-base and redox conversion between vanadium(IV) and vanadium(V) imino phenolates”, Inorg. Chem., 1988, 27, 4657 – 4664.

149. Hamstra, B.J; Houseman, A.L.P.; Colpas, G.J.; Kampf, J.W.; LoBrutto, R.; Frasch, W.D.; Pecoraro, V.L., “Structural and solution characterization of mononuclear vanadium(IV) complexes that help to elucidate the active site structure of the reduced vanadium haloperoxidases”, Inorg. Chem., 1997, 36, 4866 – 4874.

150. Asgedom, G.; Sreedhara, A.; Kivikoski, J.; Kolehmainen, E.; Rao, C.P., “Structure, characterization and photoreactivity of monomeric dioxovanadium(V) Schiff base complexes of trigonal-bipyramidal geometry”, J. Chem. Soc., Dalton Trans., 1996, 93 – 97.

151. Clauge, M.J.; Keder, N.L.; Butler, A., “Biomimics of vanadium bromoperoxidase: Vanadium(V) Schiff base catalyzed oxidation of bromide by hydrogen peroxide”, Inorg. Chem., 1993, 32, 4754 – 4761.

152. Nanda, K.K.; Sinn, E.; Addison, A.W., “The first oxovanadium(V)-thiolate complex, [VO(SCH2CH2)3N]”, Inorg. Chem., 1996, 35, 1 – 2.

153. Root, C.A.; Hoeschele, J.D.; Cornaman, C.R.; Kampf, J.W.; Pecoraro, V.L., “Structural and spectroscopic characterization of dioxovanadium(V) complexes with asymmetric Sciff base ligands”, Inorg. Chem., 1993, 32, 3855 – 3861.

154. Schmidt, Y.H.; Rehder, D., “The preparation and synthetic potential of chlorovanadium(V and IV) complexes supported by enamines and bis(enamines)”, Inorg. Chim. Acta, 1998, 267, 229 – 238.

155. Butler, A., “Mechanistic considerations of the vanadium haloperoxidases”, Coord. Chem. Rev., 1999, 187, 17 – 35.

156. Rehder, D., “The coordination chemistry of vanadium as related to its biological functions”, Coord. Chem. Rev., 1999, 182, 297 – 322.

157. Rehder, D., “Transition metals in biology and their coordination chemistry”, Trautwein, A.X., Ed.; Wiley-VCH, Weinheim, 1997, pp. 491 – 504.

158. Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L., “The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds”, Chem. Rev., 2004, 104, 849 – 902.

159. Weyand. M.; Hecht, H.J.; Kiesz, M.; Liaud, M. F.; Vilter, H.; Schomburg, D., “X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 Å Resolution”, J. Mol. Biol., 1999, 293, 595 – 611.

160. Balcells, D.; Maseras, F.; Ujaque, G., “Computational rationalization of the dependence of the enantioselectivity on the nature of the catalyst in the vanadium-catalyzed oxidation of sulfides by hydrogen peroxide”, J. Am. Chem. Soc., 2005, 127, 3624 – 3634.

161. Andersson, M.; Willetts, A.; Allenmark, S., “Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase”, J. Org. Chem., 1997, 62, 8455 – 8458.

162. Dembitsky, V.M., “Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases”, Tetrahedron, 2003, 59, 4701 – 4720.

163. Li, X.; Zhou, K., “Crystal structure of tetramethylammonium (L)-histidinatobis(thiocyanato)vanadyl(IV) monohydrate”, J. Crystallogr. Spectrosc. Res., 1986, 16, 681 – 685.

164. Cornman, C.R.; Kampf, J.; Lah, M.S.; Pecoraro, V.L., “Modeling vanadium bromoperoxidase: Synthesis, structure, and spectral properties of vanadium(IV) complexes with coordinated imidazole”, Inorg. Chem., 1992, 31, 2035 – 2043.

165. Cornman C.R.; Colpas, G.J.; Hoeschele, J.D.; Kampf, J.; Pecoraro, V.L., “Implications for the spectroscopic assignment of vanadium biomolecules: structural and spectroscopic characterization of monooxovanadium(V) complexes containing catecholate and hydroximate based noninnocent ligands”, J. Am. Chem. Soc., 1992, 114, 9925 – 9933.

166. Cornman, C.R.; Kampf, J.; Pecoraro, V.L., “Structural and spectroscopic characterization of vanadium(V)-oxoimidazole complexes”, Inorg. Chem., 1992, 31, 1981 – 1983.

167. Smith II, T.S.; Root, C.A.; Kampf, J.W.; Rasmussen, P.G.; Pecoraro, V.L., “Reevaluation of the additivity relationship for vanadyl-imidazole complexes: correlation of the EPR hyperfine constant with ring orientation”, J. Am. Chem. Soc., 2000, 122, 767 – 775.

168. Fukui, K.; Ohya-Nishiguchi, H.; Kamada, H., “Electron spin-echo envelope modulation study of imidazole-coordinated oxovanadium(IV) complexes relevant to the active site structure of reduced vanadium haloperoxidases”, Inorg. Chem., 1998, 37, 2326 – 2327.

169. Vergopoulos, V.; Priebsch, W; Fritzsche, M.; Rehder, D., “Binding of L-histidine to vanadium. Structure of exo-[VO2{N-(2-oxidonaphthal)-His}]”, Inorg. Chem., 1993, 32, 1844 – 1849.

170. Crans, D.C.; Keramidas, A.D.; Amin, S.S.; Anderson, O.P.; Miller, S.M., “Six-coordinated vanadium(IV) and -(V) complexes of benzimidazole and pyridyl containing ligands”, J. Chem. Soc., Dalton Tans., 1997, 2799 – 2812.

171. Calviou, L.J.; Arber, J.M.; Collison, D.; Garner, C.D.; Clegg, W., “A structural model for vanadyl-histidine interactions: Structure determination of [VO(1-vinylimidazole)4Cl]Cl by a combination of X-ray crystallography and X-ray absorption spectroscopy”, J. Chem. Soc., Chem. Commun., 1992, 654 – 656.

172. Keramidas, A.D.; Miller, S.M.; Anderson, O.P.; Crans, D.C., “Vanadium(V) hydroxylamido complexes: Solid state and solution properties”, J. Am. Chem. Soc., 1997, 119, 8901 – 8915.

173. Crans, D.C.; Keramidas, A.D.; Hoover-Litty, H.; Anderson, O.P.; Miller, M. M.; Lemoine, L.M.; Pleasic-Williams, S.; Vandenberg, M.; Rossomando, A.J.; Sweet, L.J., “Synthesis, structure, and biological activity of a new insulinomimetic peroxovanadium compound: Bisperoxovanadium imidazole monoanion”, J. Am. Chem. Soc., 1997, 119, 5447 – 5448.

174. Crans, D.C.; Schelble, S.M.; Theisen, L.A., “Substituent effects in organic vanadate esters in imidazole-buffered aqueous solutions”, J. Org. Chem., 1991, 56, 1266 – 1274.

175. Dutta, S.K., Samanta, S.; Mukhopadhyay, S.; Burckel, P.; Pinkerton, A.A.; Chaudhury, M., “Spontaneous assembly of a polymeric helicate of sodium with LVO2 units forming the strand: Photoinduced transformation into a mixed-valence product”, Inorg. Chem., 2002, 41, 2946 – 2952.

176. Ceson, L.A.; Day, A.R., “Preparation of some benzimidazolylamino acids. Reactions of amino acids with o-phenylenediamines,” J. Org. Chem., 1962, 27, 581 – 586.

177. Dutta, R.L.; Syamal, “A. elements of magnetochemistry”, Affiliated East-West Press, New Delhi, 2nd ed., 1993, p.8.

178. Santoni, G; Rehder, D., “Structural models for the reduced form of vanadate-dependent peroxidases: Vanadyl complexes with bidentate chiral Schiff base ligands”, J. Inorg. Biochem., 2004, 98, 758 – 764.

179. Cornman, C.R.; Geiser-Bush, K.M.; Rowley, S.P.; Boyle, P.D., “Structural and electron paramagnetic resonance studies of the square pyramidal to trigonal bipyramidal distortion of vanadyl complexes containing sterically crowded Schiff base ligands”, Inorg. Chem., 1997, 36, 6401 – 6408.

180. Wang, X.; Zhang, X.M.; Liu, H. X., “ Synthesis, properties and structure of vanadium(IV) Schiff base complex (VO)[salphen]CH3CN”, Polyhedron, 1995, 13, 293 – 296.

181. Plass, W., “Magneto-structural correlations in dinuclear d1-d1 complexes: Structure and magnetochemistry of two ferromagnetically coupled vanadium(IV) dimmers”, Angew. Chem. Int. Ed., 1996, 33, 627 – 631.

182. Gao, S.; Weng, Z.Q.; Liu, S.X., “Syntheses and characterization of four novel monooxovanadium(V) hydrazone complexes with hydroxamate or alkoxide ligand”, Polyhedron, 1998, 17, 3595 – 3606.

183. Westland, A.D.; Haque, F.; Bouchard, J.M., “Peroxo complexes of molybdenum and tungsten stabilized by oxides of amines, phosphines, and arsines. Stability studies”, Inorg. Chem., 1980, 19, 2255 – 2259.

184. Nakamoto, K., “Infrared and raman spectra of inorganic and coordination compounds”, 3rd Ed.; John Wiley & Sons, New York, 1978, p. 241.

185. Smith II, T.S.; LoBrutto, R.; Pecoraro, V.L., “Paramagnetic spectroscopy of vanadyl complexes and its applications to biological systems”, Coord. Chem. Rev., 2002, 228, 1 – 18.

186. Garribba, E.; Lodyga-Chruscinska, E.; Micera, G.; Panzanelli, A.; Sanna, D., “Binding of oxovanadium(IV) to dipeptides containing histidine and cysteine residues”, Eur. J. Inorg. Chem., 2005, 1369 – 1382.

187. Tasiopoulos, A.J.; Troganis, A.N.; Evangelou, A; Raptopoulou, C.P.; Terzis, A.; Deligiannakis, Y.; Kabanos, T.A., “Synthetic analogs for oxovanadium(IV) - glutathione interaction: An EPR, synthetic and structural study of oxovanadium(IV) compounds with sulfhydryl-containing pseudopeptides and dipeptides”, Chem. Eur. J., 1999, 5, 910 – 921.

188. Saladino, A.C.; Larsen, S.C., “Computational study of the effect of the imidazole ring orientation on the EPR parameters for vanadyl-imidazole complexes”, J. Phys. Chem. A, 2002, 106, 10444 – 10451.

189. Rehder, D.; Weidemann, C.; Duch, A.; Priebsch, W., “Vanadium-51 shielding in vanadium(V) complexes: A reference scale for vanadium binding sites in biomolecules”, Inorg. Chem., 1988, 27, 584 – 587.

190. Rehder, D., “Transition metal nuclear magnetic resonance”, Pregosin, P.S., Ed.; Elsevier, New York, 1991, pp 1 – 58.

191. Macedo-Ribeiro, S.; Hemrika, W.; Renirie, R.; Wever, R.; Messerschmidt, A., “X-ray crystal structures of active site mutants of the vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis”, J. Biol. Inorg. Chem., 1999, 4, 209 – 219.

192. Maurya, M.R.; Agarwal, S.; Bader, C.; Rehder, D., “Dioxovanadium(V) complexes of ONO donor ligands derived from pyridoxal and hydrazides: Models of vanadate-dependent haloperoxidases”, Eur. J. Inorg. Chem., 2005, 1, 147 – 157.

193. Giacomelli, A.; Floriani, C.; De Souza Duarte, A.O.; Chiesi-Villa, A.; Guastino, C., “Chemistry and structure of an inorganic analog of a carboxylic acid: Hydroxobis(8-quinolinato)oxovanadium(V)“, Inorg. Chem., 1982, 21, 3310 – 3316.

194. Kosugi, M.; Hikichi, S.; Akita, V.; Moro-oka, Y., “Inter and intramolecular hydrogen-bonding interaction of hydroxo groups and steric effect of alkyl substituents on pyrazolyl rings in TpR ligands: Synthesis and structural characterization of chloro-, acetylacetonato-, and hydroxo complexes of VO2+ with TpPri2 and TpMe2 ligands”, Inorg. Chem., 1999, 38, 2567 – 2578.

195. Zampella, G.; Fantucci, P.; Pecorao, V.L.; De Gioia, L., “Reactivity of peroxo forms of the vanadium haloperoxidases cofactor. A DFT investigation”, J. Am. Chem. Soc., 2005, 127, 953 – 960.

196. Smith II, T.S; Pecoraro, V.L., “Oxidation of organic sulfides by vanadium haloperoxidase model complexes”, Inorg. Chem., 2002, 41, 6754 – 6760.

197. Bryliakov, K.P.; Talsi, E.P.; Kuhn, T.; Bolm, C., “Multinuclear NMR study of the reactive intermediates in enantioselective epoxidations of allylic alcohols catalyzed by a vanadium complex derived from a planar-chiral hydroxamic acid”, New. J. Chem., 2003, 27, 609 – 614.

198. Hulea, V.; Dumitriu, E., “Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies”, Appl. Catal. A: Gen., 2004, 277, 99 – 106.

199. Andersson, M.A.; Allenmark, S.G., “Asymmetric sulfoxidation catalyzed by a vanadium bromoperoxidase: substrate requirements of the catalyst”, Tetrahedron, 1998, 54, 15293 – 15304.

200. ten Brink, H.B.; Holland, H.L.; Schoemaker, H.E.; van Lingen, H.; Wever, R., “Probing the scope of the sulfoxidation activity of vanadium bromoperoxidase from Ascophyllum nodosum”, Tetrahedron: Asymmetry, 1999, 10, 4563 – 4572.

201. Arber, J.M.; deBoer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R., “Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum”, Biochem., 1989, 28, 7968 – 7973.


202. deBoer, E.; Boon, K.; Wever, R., “Electron paramagnetic resonance studies on conformational states and metal ion exchange properties of vanadium bromoperoxidase”, Biochem., 1988, 27, 1629 – 1635.

203. Schuster, H.; Chiodini, P.L., “Parasitic infections of the intestine”, Curr. Opin. Infect. Dis., 2001, 14, 587 – 591.

204. Nigro, M.M.L.; Gadano, A.B.; Carballo, M.A., “Evaluation of genetic damage induced by a nitroimidazole derivative in human lymphocytes: Tinidazole (TNZ)”, Toxicol., 2001, 15, 209 – 213.

205. Moreno, S.N.; Docampo, R., “Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis”, Environ. Health Perspect., 1985, 64, 199 – 208.

206. Akgun, Y.; Tacyldz, I.; Celik, Y., “Amebic liver abscess: changing trends over 20 years”, World J. Surg., 1999, 23, 102 – 106.

207. Conoor, T.H.; Stoeckel, M.; Evrard, J.; Legator, M.S., “The contribution of metronidazole and two metabolites to the mutagenic activity detected in urine of treated humans and mice”, Cancer Res., 1977, 37, 629 – 633.

208. Kapoor, K.; Chandra, M.; Nag, D.; Paliwal, J.K.; Gupta, R.C.; Saxena, R.C., “Evaluation of metronidazole toxicity: A prospective study”, Int. J. Clin. Pharmacol. Res., 1999, 19, 83 – 88.

209. Rosenkranz, H.S.; Speck, W.T., “Mutagenicity of metronidazole: Activation by mammalian liver microsomes”, Biochem. Biophys. Res. Commun., 1975, 66, 520 – 525.

210. Rowley, A.; Knight, C.; Skolimowski, M.; Edwards, D.I., “The relationship between misonidazole cytotoxicity and base composition of DNA”, Biochem. Pharmacol., 1980, 29, 2095 – 2098.

211. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Suppl. 7, International Agency for Research on Cancer, Lyon. 1987 pp. 250 – 251.

212. Vanadium and its role in life [Metal ions in biological systems] Vol. 31; Sigel, H.; Sigel, A., Eds.; Marcel Dekker: New York, 1995.

213. Martinez, J.S.; Carrol, G.L.; Tschirret-Guth, R.A.; Altenhoff, G.; Little, R.D.; Butler, A., “On the regiospecificity of vanadium bromoperoxidase”, J. Am. Chem. Soc., 2001, 123, 3289 – 3294.

214. Rehder, D., “Vanadium nitrogenase”, J. Inorg. Biochem., 2000, 80, 133 – 136.

215. See chapter 2. for details.

216. Baran, E.J., “Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems”, J. Inorg. Biochem., 2000, 80, 1 – 10.

217. Kiss, T.; Jakusch, T.; Pessoa, J.C.; Tomaz, I., “Interactions of VO(IV) with oligopeptides”, Coord. Chem. Rev., 2003, 237, 123 – 133.

218. Kiss, T.; Jakusch, T.; Kilyen, M.; Kiss, E.; Lakatos, A., “Solution speciation of bioactive Al(III) and VO(IV) complexes”, Polyhedron, 2000, 19, 2389 – 2401.

219. Dutta, S.K.; Tiekink, E.R.T.; Chaudhury, M., “Mono- and dinuclear oxovanadium(IV) compounds containing VO(ONS) basic core: Synthesis, structure and spectroscopic properties”, Polyhedron, 1997, 16, 1863 – 1871.

220. Maurya, M.R.; Khurana, S.; Zhang, W.; Rehder, D., “Vanadium(IV/V) complexes containing [VO]2+, [VO]3+, [VO2]+ and [VO(O2)]+ cores with ligands derived from 2-acetylpyridine and S-benzyl- or S-methyldithiocarbazate”, Eur. J. Inorg. Chem., 2002, 1749 – 1760.

221. Wang, V.; Ebel, M.; Schulzke, C.; Grüning, C.; Hazari, S.K.S.; Rehder, D., “Vanadium(IV and V) complexes containing SNO (dithiocarbonylhydrazone; thiosemicarbazone) donor sets”, Eur. J. Inorg. Chem., 2001, 935 – 942.

222. Dutta, S.K.; Samanta, S.; Ghosh, D.; Butcher, R.J.; Chaudhury, M., “Oxovanadium(V) and cobalt(III) complexes of dithiocarbazate-based Schiff base ligands: Formation of a thiadiazole ring by vanadium-induced cyclization of the coordinated ligand”, Inorg. Chem., 2002, 41, 5555 – 5560.

223. Bhattacharyya, S.; Mukhopadhyay, S.; Samanta, S.; Weakley, T.J.R.; Chaudhury, M., “Synthesis, characterization, and reactivity of mononuclear O,N-chelated vanadium(IV) and -(III) complexes of methyl 2-aminocyclopent-1-ene-1-dithiocarboxylate based ligand: Reporting an example of conformational isomerism in the solid state”, Inorg. Chem., 2002, 41, 2433 – 2440.

224. Tarafder, M.T.H.; Ali, M.A.; Saravanan, N.; Weng W.Y.; Kumar, S.; Umar-Tsafe, N.; Crouse, K.A.; Serdang, M., “Coordination chemistry and biological activity of two tridentate ONS and NNS Schiff bases derived from S-benzyldithiocarbazate”, Trans. Met. Chem., 2000, 25, 295 – 298.

225. Monga, V.; Thompson, K.H.; Yuen, V.G.; Sharma, V.; Patrick, B.O.; McNeill, J.H.; Orvig, C., “Vanadium complexes with mixed O,S anionic ligands derived from maltol: Synthesis, characterization, and biological studies”, Inorg. Chem., 2005, 44, 2678 – 2688.

226. Sakurai, H.; Sano, H.; Takiro, T.; Yasui, H., “An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats”, J. Inorg. Biochem., 2000, 80, 99 – 105.

227. Mishra, V.; Pandeya, S.N.; Pannecouque, C.; Witvrouw, M.; De Clercq, E., “Anti-HIV activity of thiosemicarbazone and semicarbazone derivatives of ()-3-menthone”, Arch. Pharm., 2002, 335, 183 – 186.

228. Condit, R.C.; Easterly, R.; Pacha, R.F.; Fathi, Z.; Meis, R.J., “A vaccinia virus isatin-beta-thiosemicarbazone resistance mutation maps in the viral gene encoding the 132-kDa subunit of RNA polymerase”, Virology, 1991, 185, 857 – 861.

229. Finch, R.A.; Liu, M.C.; Cory, A.H.; Cory, J.G.; Sartorelli, A.C., “Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP). An inhibitor of ribonucleotide reductase with antineoplastic activity”, Adv. Enzyme Regul., 1999, 39, 3 – 12.

230. Klayman, D.L.; Bartosevich, J.F.; Griffin, T.S.; Mason, C.J.; Scovill, J.P., “2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents”, J. Med. Chem., 1979, 22, 855 – 862.

231. Wilson, H.R.; Revankar, G.R.; Tolman, R.L., “In vitro and in vivo activity of certain thiosemicarbazones against Trypanosoma cruzi”, J. Med. Chem., 1974, 17, 760 – 761.

232. Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E., “Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain”, J. Med. Chem., 2002, 45, 2695 – 2707.

233. Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fisher, J.; MacDonald, S., “Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule”, Cancer Chemother. Pharmacol., 2002, 50, 223 – 229.

234. Diamond, L.S.; Harlow, D.R.; Cunnick, C.C., “A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba”, Trans. R. Soc. Trop. Hyg., 1978, 72, 431 – 432.

235. O’Sullivan, D.G.; Sadler, P.W.; Webley, C., “Chemotherapeutic activity of isatin -4',4'-dialkylthiosemi-carbazones against infectious ectromelia”, Chemotherapia, 1963, 7, 17 – 26.

236. Ali, M.A.; Tarafder, M.T.H., “Metal complexes of sulfur and nitrogen-containing ligands: complexes of S-benzyldithiocarbazate and a Schiff base formed by its condensation with pyridine-2-carboxaldehyde”, J. Inorg. Nucl. Chem., 1977, 39, 1785 – 1791.

237. Das, M.; Livingstone, S.E., “Metal chelates of dithiocarbazic acid and its derivatives. IX. Metal chelates of ten new Schiff bases derived from S-methyldithiocarbazate”, Inorg. Chim. Acta, 1976, 19, 5 – 10.

238. Dutta, S.; Basu, P.; Chakravorty, A., “Chemistry of mononuclear and binuclear oxidic vanadium(V), VVVV, and VVVIV azophenolates”, Inorg. Chem., 1993, 32, 5343 – 5348.

239. Sangeetha, N.R.; Pal, S., “A family of dinuclear vanadium(V) complexes containing the {OV(-O)VO}4+ core: Syntheses, structures, and properties”, Bull. Chem. Soc. Jpn., 2000, 73, 357 – 363.

240. Pessoa, J.C.; Silva, J.A.L.; Vieira, A.L.; Vilas-Boas, L.; O’Brien, P.; Thornton, V., “Salicylideneserinato complexes of vanadium. Crystal structure of the sodium salt of a complex of vanadium(IV) and -(V)”, J. Chem. Soc., Dalton Trans., 1992, 1745 – 1749.

241. Gruning, C.; Schmidt, H.; Rehder, D., “A water-soluble, neutral {aqua-VV}2 complex with a biomimetic ONO ligand set”, Inorg. Chem. Commun., 1999, 2, 57 – 59.

242. Mondal, S.; Ghosh, P.; Chakravorty, A., “A family of  -amino acid salicylaldiminates incorporating the binuclear V2O33+ Core: Electrosynthesis, structure, and metal valence”, Inorg. Chem., 1997, 36, 59 – 63.

243. Cavaco, I.; Pessoa, J.C.; Costa, D.; Duarte, M.T.; Gillard, R.D.; Matias, P., “N-Salicylideneamino acidate complexes of oxovanadium(IV). Part 1. Crystal and molecular structures and spectroscopic properties”, J. Chem. Soc., Dalton Trans., 1994, 149 – 157.

244. Maurya, M.R.; Khurana, S.; Schulzke, C.; Rehder, D., “Dioxo- and oxovanadium(V) complexes of biomimetic hydrazone ONO donor ligands: Synthesis, characterisation, and reactivity”, Eur. J. Inorg. Chem., 2001, 779 – 788.

245. Wright, C.W.; O’Neill, M.J.; Phillipson, J.D.; Warhurst, D.C., “Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem, and a number of quassinoids”, Antimicrob. Agents Chemother., 1988, 32, 1725 – 1729.

246. Plass, W.; Pohlmann, A.; Yozgatli, H.K., “N-salicylidenehydrazides as versatile tridentate ligands for dioxovanadium(V) complexes”, J. Inorg. Biochem., 2000, 80, 181 – 183.

247. Colpas, G.J.; Hamstra, B.J.; Kampf, J.W.; Pecoraro, V.L., “Functional models for vanadium haloperoxidase: Reactivity and mechanism of halide oxidation”, J. Am. Chem. Soc., 1996, 118, 3469 – 3478.

248. Hamstra, B.J.; Colpas, G.J.; Pecoraro, V.L., “Reactivity of dioxovanadium(V) complexes with hydrogen peroxide: Implications for vanadium haloperoxidase”, Inorg. Chem., 1998, 37, 949 – 955.

249. Maurya, M.R.; Agarwal, S.; Bader C.; Ebel M.; Rehder, D., “Synthesis, characterisation and catalytic potential of hydrazonato-vanadium(V) model complexes with [VO]3+ and [VO2]+ cores”, Dalton transactions, 2005, 3, 537 – 544.

250. Bryliakov, K.P.; Karpyshev, N.N.; Fominsky, S.A.; Tolstikov, A.G.; Talsi, E. P., “51V and 13C NMR spectroscopic study of the peroxovanadium intermediates in vanadium catalyzed enantioselective oxidation of sulfides”, J. Mole. Catal. A: Chem., 2001, 171, 73 – 80.

251. Bolm, C.; Bienewald, F., “Asymmetric sulfide oxidation with vanadium catalysts and H2O2”, Angew. Chem. Int. Ed., 1996, 34, 2640 – 2642.

252. Hirao, T., “Vanadium in modern organic synthesis”, Chem. Rev. 1997, 97, 2707 – 2724.

253. Canali, L.; Sherrington, D.C., “Utilization of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis”, Chem. Soc. Rev. 1999, 28, 85 – 93.

254. Sherrington, D.C., “Polymer-supported metal complex alkene epoxidation catalysts”, Catal. Today, 2000, 57, 87 – 104.

255. Ogunwumi, S.B.; Bein, T., “Intrazeolite assembly of a chiral manganese salen epoxidation catalyst”, Chem. Commun., 1997, 9, 901 – 902.

256. Knops-Gerrits, P.P.; De Vos, D.; Thibault-Starzyk, F.; Jacobs, P.A., “Zeolite-encapsulated Mn(II) complexes as catalysts for selective alkene oxidation”, Nature., 1994, 369, 543 – 546.

257. Joseph, T.; Srinivas, D.; Gopinath, C.S.; Halligudi, S.B., “Spectroscopic and catalytic activity studies of VO(saloph) complexes encapsulated in Zeolite-Y and Al-MCM-41 molecular sieves”, Catal. Lett., 2002, 83, 209 – 214.

258. Awasarkar, P.A.; Gopinathan, S.; Gopinathan, C., “Organooxytitanium and organotin derivatives of dibasic tetradentate chelating disulfides”, Synth. React. Inorg. Met.Org. Chem., 1985, 15, 133 – 147.

259. Siddiqi, K.S.; Khan, N.H.; Kureshy, R.I.; Tabassum, S.; Zaidi, S.A.A., “Complexes of group(IV) metals with 5,5'-methylenebis(salicylaldehyde) and its Schiff base with hydrazine”, Indian J. Chem., 1987, 26, 492 – 494.

260. Groeneman, R.H.; MacGillivray, L.R.; Atwood, J.L., “One-dimensional coordination polymers based upon bridging terephthalate ions”, Inorg. Chem., 1999, 38, 208 – 209.

261. Maurya, M.R.; Jain, I.; Titinchi, S.J.J., “Coordination polymers based on bridging methylene group as catalysts for the liquid phase hydroxylation of phenol”, Appl. Catal. A: Gen., 2003, 249, 139 – 149.

262. Marvel, C.S.; Tarkoy, N., “Heat-stability studies on chelates from Schiff bases of salicylaldehyde derivatives”, J. Am. Chem. Soc., 1957, 79, 6000 – 6003.

263. Krishnamurthy, S.S.; Soundarajan, S., “Dimethylformamide complexes of rare earth nitrates”, J. Inorg. Nucl. Chem., 1966, 28, 1689 – 1692.

264. Dutton, J.C.; Fallon, G.D.; Murray, K.S., “Synthesis, structure, ESR spectra, and redox properties of (N,N'-ethylenebis(thiosalicylideneaminato)) oxovanadium(IV) and of related {S,N} chelates of vanadium(IV)”, Inorg. Chem., 1988, 27, 34 – 38.

265. Bonadies, J.A.; Butler, W.M.; Pecoraro, V. L.; Carrano, C.J., “Novel reactivity patterns of (N,N'-ethylenebis(salicylideneaminato))oxovanadium(IV) in strongly acidic media”, Inorg. Chem., 1987, 26, 1218 – 1222.

266. Srinivasan, K.; Michaud, P.; Kochi, J.K., “Epoxidation of olefins with cationic (salen)manganese(III) complexes. The modulation of catalytic activity by substituents”, J. Am. Chem. Soc., 1986, 108, 2309 – 2320.

267. Irie, R.; Ito, Y.; Katsuki, T., “Donor ligand effect in asymmetric epoxidation of unfunctionalized olefins with chiral salen complexes”, Syn. Lett., 1991, 265 – 266.

268. Kumar, S.B.; Mirajkar, S.P.; Pais, G.C.G.; Kumar, P.; Kumar, R., “Epoxidation of styrene over a titanium silicate molecular sieve TS-1 using dilute H2O2 as oxidizing agent”, J. Catal., 1995, 156, 163 – 166.

269. Reddy, E.J.S.; Khire, U.R.; Ratnasamy, P.; Mitra, R.B., “Cleavage of the carbon-carbon double bond over zeolites using hydrogen peroxide”, J. Chem. Soc., Chem. Commun., 1992,1234 – 1235.

270. Hulea, V.; Dumitriu, E., “Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies”, Appl. Catal. A: Gen., 2004, 277, 99 – 106.

271. Yin, D.; Qin, L.; Liu, J.; Li, C.; Jin, Y., “Gold nanoparticles deposited on mesoporous alumina for epoxidation of styrene: effects of the surface basicity of the supports”, J. Mol. Catal. A: Chem., 2005, 240, 40 – 48.

272. Butler, A., “Mechanistic considerations of the vanadium haloperoxidases”, Coord. Chem. Rev., 1999, 187, 17 – 35.

273. Casny, M.; Rehder, D., “Molecular and supramolecular features of oxo-peroxovanadium complexes containing O3N, O2N2 and ON3 donor sets”, Dalton Trans., 2004, 839 – 846.

No comments:

Post a Comment

Related Posts with Thumbnails